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ABSTRACT

Senescence emerged as significant mechanism of aging and age-related diseases, offering an attractive target
for clinical interventions. Senescent cells release a senescence-associated secretory phenotype (SASP),
including exosomes that may act as signal transducers between distal tissues, and propagate secondary
senescence. However, the composition of exosomal SASP components remains underexplored. We identified
~1,300 exosome proteins released by senescent primary human lung fibroblasts induced by three different
senescence inducers. In parallel, a small human plasma cohort from young (20-26 years) and old (65-74
years) individuals revealed 1,350 exosome proteins and 171 plasma exosome proteins were altered in old
individuals. Of the age-regulated plasma exosome proteins, we observed 52 exosomal SASP factors that were
also regulated in exosomes from the senescent fibroblasts, SERPINs, Prothrombin, Coagulation factor V,
Plasminogen, and Reelin. We identified 247 exosome lipids. Following senescence induction
phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins increased significantly indicating
cellular membrane changes. Significantly changed proteins were related to extracellular matrix remodeling
and inflammation, both potentially detrimental pathways that can damage surrounding tissues and even
induce secondary senescence. Our proof-of-principle study — even though initially from a rather small human
cohort — suggested potential senescence biomarker candidates, enabling future surveillance of senescence
burden in the aging population.

INTRODUCTION will have far-reaching social, economic, and healthcare

implications. The aging population is at an increased
The World Health Organization (WHO) estimates that risk for chronic diseases, which could result in a
one out of every six individuals in the world will be significant public health crisis [2, 3]. Therefore, there is
aged 60 or older by 2030 [1]. This demographic shift a critical need to prioritize healthy aging, which begins
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with comprehending the fundamental molecular basis of
aging to identify potential interventions and biomarkers.

Cellular senescence is considered a crucial mechanism
of aging because senescent cells accumulate in different
tissues over time and contribute to the aging process [4].
Senescence is the process by which cells become cell
cycle arrested while still staying viable, metabolically
active, and undergoing distinct phenotypic alterations.
Senescence can be induced by various intrinsic factors,
such as telomer shortening (Hayflick’s limit) [5], by
extrinsic factors, such as irradiation (IR) and chemical
reagents (e.g., doxorubicin, doxo), or via Mitochondrial
Dysfunction-Associated Senescence (MiDAS) [6, 7].
The various senescence inducers all exhibit varied
modes of action, for example, irradiation causes double-
stranded breaks in DNA [8], doxorubicin induces DNA
cross-linking [9], while disruption in normal
mitochondrial function results in MiDAS [6]. Senescent
cells exert their pleiotropic biological effects by
secretion of senescence-associated secretory phenotype
(SASP) [10-12]. The SASP represents a myriad of pro-
inflammatory molecules, growth factors, extracellular
matrix (ECM) metalloproteinases, microRNAs, and
lipids that are either directly secreted or packaged into
exosomes [13—15].

Exosomes are small, lipid-bilayer enclosed nanoparticles
derived from cells with a diameter ranging between 30
nm and 150 nm. They are known to transport various
biomolecules to recipient cells in a paracrine or endocrine
manner, allowing them to act as signal transducers
between distal tissues [16]. The cargo carried by
circulating exosomes includes proteins, lipids, miRNA
and other components, which all have been implicated in
aging and age-related diseases [17]. However, the
comprehensive characterization of exosomal SASP
components and their role in potentially propagating
senescence (secondary/bystander senescence) and how
they may influence the aging progression is still
largely understudied. Several challenges include
sub-optimal enrichment strategies that are compatible
with mass spectrometry (MS) technologies and protein
contamination from biofluids, which often impede
downstream omics processing [18].

Current methods for isolating exosomes commonly rely
on physical properties of extracellular vesicles (EVs) or
target-specific surface markers [19]. A novel approach,
Mag-Net, enriches extracellular vesicles from plasma
through electrostatic interactions, providing a promising
alternative [20]. Ultracentrifugation is one of the more
common methods for exosome enrichment [21].
However, this low-throughput method can lead to
contamination from other EVs, high molecular weight
proteins, and highly abundant proteins. To enhance

exosome purity, size exclusion chromatography (SEC)
is often used before centrifugation or filtration [22].
Developing high-throughput workflows for identifying
and  quantifying circulating  exosomal = SASP
components (secreted from various senescent cell types)
in plasma is a valuable resource for characterizing
cellular senescence signatures by identifying (i) specific
affected tissues, (ii) biomarkers to measure biological
age non-invasively, and (iii) novel targets for anti-aging
therapeutics.

In this study, we developed a platform to enrich
exosomes from plasma and tissue culture for the
analysis of exosomal proteins, lipids, and miRNA
(Figure 1). Additionally, we generated a novel “human
exosome protein spectral library” using data-
dependent acquisition (DDA) and performed data-
independent acquisition (DIA) workflows for exosome
protein quantification. This development introduces
quantitative plasma exosome workflows, where DIA-
MS acquisitions [23, 24] are searched efficiently in
Spectronaut (Biognosys). Our study showed that
senescent fibroblasts induced by three stimuli (IR, doxo,
and Antimycin A-induced MiDAS) released highly
complex and dynamic overlapping exosome profiles,
some of which overlap with profiles we also observed
in the human plasma exosomes from older individuals.
Importantly, in exosomes from senescent cells we
identified many categories of significantly changing
proteins related to extracellular matrix remodeling and
inflammation, which are both implicated in accelerating
secondary senescence. Our study aims to address
several critical knowledge gaps in the field of exosome-
associated SASP, including identifying aging-specific
exosome signatures, cell-specific contributions, and
local versus systemic effects. We also explore
molecular pathways through which exosomes propagate
senescence, inflammation, and tissue remodeling. To
advance this understanding, we optimized exosome
isolation workflows from both cell culture and plasma,
enabling robust multi-omics analyses. Our study has
identified and quantified exosome cargo, including not
only proteins but also significantly altered lipids and
miRNAs. These findings enhance our understanding of
exosome composition in aging and provide a foundation
for developing senescence-targeted diagnostics and
therapeutics to manage age-associated diseases and
promote healthy aging.

RESULTS

Exosome enrichment workflow from a plasma aging
cohort and from primary cultured senescent cells

We performed a comprehensive proteomic analysis of
exosomal SASP components from senescent primary
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Figure 1. Multi-omics workflow for aging/senescence exosome biomarker discovery. (A) Two different sample types, primary
human lung fibroblasts and human plasma, were investigated. Three senescence stimuli, Irradiation; IR, Doxorubicin; doxo, and Antimycin A-
induced mitochondrial dysfunction-associated senescence; MiDAS, were used to generate senescent primary human lung fibroblasts (n=4,
each condition). Quiescent cells (Qui) or DMSO-treated fibroblasts were used as control. Plasma from young (20-26 years old) and older (65-
74 years old) individuals was used (n=5 each). Exosomes were enriched by sequential size-exclusion chromatography and ultrafiltration
(SEC/UF). Immunoblotting and particle size analysis was conducted to confirm enriched, high-quality, and intact exosomes. Three different
protein spectral libraries; DDA, directDIA, and hybrid, were generated. Multicomponent Senescence/Aging Biomarkers were identified by
high-throughput quantitative exosome multi-omics (proteomics, lipidomics, and miRNA) analysis.
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human lung fibroblast cells (IMR90) induced by three
different stimuli, irradiation (IR), doxorubicin (doxo),
and Antimycin A-induced MiDAS. Furthermore, we
profiled the proteome and miRNA contained in
exosomes from plasma from young (20-26 years old)
and older (65-74 years old) individuals (Figure 1). It
should be noted that this cohort was relatively small
with 5 young and 5 elderly participants.

To improve the purity of exosome enrichment for
downstream processing we developed a robust workflow

A SECIUF is ideal for exosome proteomics analysis
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for exosome enrichment using sequential size-exclusion
chromatography (SEC) followed by ultrafiltration
(SEC/UF) or SEC followed by ultracentrifugation
(SEC/UC; Supplementary Figure 1A). Both SEC/UC
and SEC/UF vyielded equivalent protein groups
identification for exosomes by mass spectrometric
proteomics analysis (Supplementary Figure 1B). With
consideration for ease, time, and cost-effectiveness,
we proceeded with SEC/UF for downstream proteomics
and miRNA analysis (Figure 2A). The details of SEC
elution and pooling strategies are provided in Figure 2B.
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Figure 2. Exosome enrichment from plasma and primary human lung fibroblasts (IMR90) and characterization. (A) Exosome
isolation workflow using sequential size-exclusion chromatography and ultrafiltration (SEC/UF). (B) Scheme for SEC fraction collection.
(C) Spectrophotometric quantification of exosomes in SEC fractions. Red, Exosome (ODegoo); Blue, plasma proteins (ODago, dilution 1:20).
(D) Exosome size distribution analysis by gNano Gold. Mean diameter; 135 nm, Mode diameter; 107 nm. (E) Immunoblot of exosome protein
markers; CD9 antigen (CD9) and Tumor susceptibility gene 101 protein (TSG101) in different exosome fractions to confirm enrichment. IgG
and albumin were used as determinants of plasma protein contaminants. E1-E5: exosome fractions, P1: the pool of fractions 11 + 12, and
P10: the pool of fractions 29 + 30 (1:20 dilution) were loaded for comparison between plasma proteins and exosome fractions. (F) Semi-
guantitative estimation of the volume intensities of western blot bands using Image J software.
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Twenty SEC-extracted plasma fractions (1 mL each)
were initially analyzed by spectrophotometry as a crude
assessment of exosome enrichment (15-35 mL in the
fractionation scheme). The majority of plasma exosomes
were eluted within the first 10 fractions (i.e. 10 mL),
whereas contaminating plasma proteins eluted more
slowly, with a maximum protein concentration achieved
by the 20" fraction (Figure 2C). A pool of all the
fractions containing exosomes were estimated to have
~1x10'% exosome particles per mL of plasma with a
gNano Gold nanoparticle characterization instrument,
which uses tunable resistive pulse sensing to measure
particles (Figure 2D). For immunoblotting, from the 10
mL containing exosomes (Figure 2C) we pooled each
two consecutive fractions into one, resulting in a total of
five exosome-enriched fractions (E1-E5), one post-EV
fraction (P1), and a pooled soluble protein fraction (P10)
containing all subsequent fractions (Figure 2B).
Fractions E2-E5 stained positively for the exosome-
specific protein markers CD9 (27 kDa) and Tumour
Susceptibility Gene 101 (TSG101; 44 kDa; Figure 2E,
2F). Using the SEC/UF workflow, we observed more
intense bands for exosome-specific markers and less
contaminating bands from protein contaminants IgG and
albumin (which pose challenges in downstream
proteomic analysis) compared to UC (Figure 2E, 2F).
These results highlight our rational to proceed with the
SEC/UF approach. Correspondingly, we also performed
exosome enrichment and subsequent exosome quality
control (QC) for exosomes from human primary
fibroblasts IMR90 (Supplementary Figure 1C). Overall,
our SEC/UF workflow led to highly enriched, intact, and
‘contaminant-free’  (certainly  contaminant-reduced)
exosomes from both isolation schemes from human
plasma as well as from human primary fibroblasts. The
biological outcomes and pathways are discussed in the
below sections.

Mass spectrometric quantification of exosome protein
cargo via label-free data-independent acquisition
(DIA)

Data-independent acquisition (DIA)-mass spectrometry
(MS) provides comprehensive and highly quantitative
workflows for protein identification analyzing complex
biological matrices, such as plasma, but also from more
specialized ‘sub-compartments’, such as exosomes

and/or extracellular vehicles. DIA-MS [23-25]
approaches have tremendously enhanced protein
coverage, deep protein profiling and quantitative

precision by employing an unbiased MS/MS data
acquisition of precursor ions, leading to confident and
reproducible peptide identification and quantification
across biological replicates. To optimally search
using mass spectrometric spectral libraries for data
processing, we developed custom, in-house spectral

libraries for human plasma-exosome samples from five
young (20-26 years) and five older (65-74 years)
individuals (Supplementary Table 1), using two
different data acquisition approaches (Figure 1). The
first approach using data-dependent acquisition (DDA)
built a comprehensive exosome spectral library from
highly fractionated samples, that served as a resource
for future work, and that can be applied to any future
DIA-MS analyses of human exosome samples. More
specifically, we generated a DDA spectral library from
DDA acquisitions of 25 generated reversed-phase
fractions from pooled plasma exosome proteins. A total
of 2,323 protein groups was identified upon processing
with the Spectronaut (Biognosys) search algorithm
(Supplementary Figure 2A and Supplementary Table
2A), among which 1,902 protein groups were identified
with at least two unique peptides (Supplementary Table
2B). The second approach using data-independent
acquisition (DIA) was introduced to feature a robust,
precise, and straightforward methodology that does not
require an up-front generation of deep spectral libraries
by fractionation, which can be time-consuming, labor-
intensive, and typically requires a larger amount of
starting material. Plasma exosome samples from 10
human individuals were subjected to DIA-MS analysis
and subsequently processed using the directDIA
algorithm within Spectronaut. We also combined the
DDA and directDIA spectral libraries to develop a
hybrid library consisting of overall 2,225 protein groups
(Supplementary Figure 2A and Supplementary Table
2E), of which 1,808 proteins were identified with at
least two unique peptides (Supplementary Table 2F).
The hybrid spectral library was used to search the
plasma exosome DIA-MS data reported in this study
(Supplementary Table 2F). For more details regarding
the spectral library approaches and additional metrics
and quality control, as well as comparisons with other
publicly available biofluid exosome datasets (urine
exosomes [26]), please see Supplementary Figure 2 and
Supplementary Table 2A-2H. Our generated hybrid
spectral library showed an overlap of 79% with the
Plasma Exocarta database [27], confirming a highly
enriched and robust isolated exosome proteins.
Interestingly, 370 (~21%) plasma exosome proteins
were uniquely identified in our study (Supplementary
Figure 2H), potentially representing novel plasma
exosome proteins.

Distinct exosomal SASP protein profiles obtained
from senescent human primary lung fibroblasts
exposed to different senescence inducers

To evaluate the impact of different senescence stimuli
on exosomal SASP proteins, we induced senescence in
human primary fibroblasts by (a) Irradiation (IR), (b)
doxorubicin (doxo), and (c) Antimycin A (MiDAS)
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(Figure 3A (i)). Either quiescent (Qui) or DMSO-treated
(DMSO) fibroblasts were used as a control. Each
senescence stimulus and the control group comprised
four biological replicates. Figure 3A (ii) provides a
detailed account of the exosomal SASP collection
following senescence induction. Briefly, we induced
senescence in fibroblasts by IR, doxo, or MiDAS and
allowed 10 days for the senescent phenotype to develop
as previously described [10]. In parallel, the control
cells were brought into quiescence state (Qui) by
incubating in 0.2% serum (minimal media) for 3 days
by mock irradiation or treatment with DMSO in 0.2%
serum for 1 day. Senescence-induced cells and control
cells (Qui or DMSO) were cultured in serum-free
medium for 1 day before collection of the conditioned
media containing exosomal SASP components for the
mass spectrometric end-point analysis. Cell viability
assays confirmed no detectable difference in apoptosis/
cell death in senescent and control fibroblast cells
measured by SYTOX™ Green Nucleic Acid Stain
(Supplementary Figure 3A). Furthermore, EAU and SA-
B-Gal counter staining confirmed senescence (more than
90%) in IR-, doxo-, and MiDAS-induced senescent
IMRO90 cells compared to Qui control, while ~10%
of senescent and Qui controls were dividing cells
(Figure 3B). In MiDAS, mitochondrial dysfunction was
observed by a decrease in NAD+/NADH ratio
indicating the electron transport chain was inhibited
(Supplementary Figure 3B).

Size  exclusion/ultrafiltration =~ (SEC/UF)-enriched
exosome proteins were extracted and processed for
label-free data-independent acquisition (DIA). The
DIA-MS approach facilitated sensitive and accurate
quantification of exosomal SASP proteins by
quantification of the tandem mass spectrometry (MS2)
fragment ions, specifically quantifying the ‘peak area
under the curve’ from extracted ion chromatograms
(XICs). We quantitatively compared exosome proteins
(= 2 unique peptides) released by senescent fibroblasts
with exosome proteins from Qui controls, and we
cataloged significantly changed proteins (g-value <
0.05) that featured an absolute fold change > 1.5-fold
(comparing senescent vs control) (Figure 3C and
Supplementary Table 3A—3F). Exosome proteins were
released at considerably higher levels by senescent
fibroblasts compared to quiescent control cells, and we
refer to them as ‘exosomal SASP components’. Our
unbiased proteomic profiling identified 1,426 exosome
proteins amongst the three different senescent inducers,
a large fraction of which 60%, 48%, and 80% were
significantly up- or down-regulated in IR, doxo, or
MiDAS, respectively (Figure 3C). Interestingly, most
of the significantly changed exosome proteins (742)
were markedly upregulated in the IR condition; in
contrast, most exosome proteins (1,078) were down-

regulated in MiDAS-induced senescence (Figure 3C).
To visualize the significant changes, the volcano
plots of senescent fibroblasts versus Qui control
(senescence/Qui) showed the significantly altered
protein levels (g-value < 0.05, [log>fold change| > 0.58)
(Supplementary Figure 3C and Supplementary Table
3B, 3D, 3F). Up-regulated proteins in ‘IR vs Qui’
included Fermitin family homolog 3 (FERMT3),
Creatine kinase M-type (CKM), Myosin-9 (MYH9) as
well as numerous ribosomal proteins (RPLs and RPs)
and eukaryotic translation initiation factors (EIFs),
while ECM proteins collagens, laminins, Decorin
(DCN), Biglycan (BGN), and nidogens were down-
regulated. With respect to ‘Doxo vs Qui’, up-regulation
of several proteasome subunits (PSMCs, PSMDs,
PSME2), Protein VACI14 homolog (VACI14), and
Collagen alpha-1(XII) chain (COL12A1), and down-
regulation of Endothelin receptor type B (EDNRB),
Phospholipid phosphatase 3 (PLPP3), Neuroblast
differentiation-associated protein AHNAK  were
observed. ‘MiDAS vs Qui’ comparison featured up-
regulated Neutral amino acid transporter A (SLC1A4),
complement proteins and fibrinogens, and down-
regulated Pantetheinase (VNNI1), Procollagen C-
endopeptidase enhancer 1 (PCOLCE), collagens, and
laminins. Although we discovered distinct protein
signatures per each of the senescence induction with
proteins that are uniquely up- and down-regulated with
senescence, we also observed 318 exosome proteins
that are common between the different inductions
(Figure 3D). Specifically, we identified 46 up- and 103
down-regulated exosome proteins that are common
among the different senescence stimuli (Supplementary
Table 3G, 3H, respectively). Top common up-regulated
SASP proteins were Fermitin family homolog 3
(FERM3), Creatine kinase M-type (CKM), Protein
VAC14 homolog (VACI14), Neural cell adhesion
molecule 1 (NCAM1), and Tetraspanin-4 (TPS4). Top
common down-regulated proteins upon senescence
induction included Procollagen C-endopeptidase
enhancer 1 (PCOLCE), Endothelin receptor type B
(EDNRB), Phospholipid phosphatase 3 (PLPP3),
Leukocyte elastase inhibitor (SERPINB1), and
mitochondrial Superoxide dismutase [Mn] (SOD2).
The top up- and down-regulated exosomal SASP
proteins common between MiDAS, doxo, and IR
conditions are grouped into 12 biological processes
(BP), such as cell adhesion, proteolysis, and
metabolism, and 5 cellular compartments (CC) (Figure
3E); 72% of these common proteins are known
exosome (or EV) proteins. The clustering by partial
least squares-discriminant analysis (PLS-DA) con-
firmed distinct exosome profile clustering between
senescent fibroblasts and quiescent control fibroblasts,
whereby clustering of senescent conditions showed an
overlap in their exosome profiles (Figure 3F).
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Figure 3. Senescence stimuli specific exosome protein signatures in primary human lung fibroblasts (IMR90). (A) (i). Study
design showing three different senescence stimuli, Irradiation; IR, Doxorubicin; doxo, and Antimycin A-induced mitochondrial dysfunction-
associated senescence; MiDAS, were used to generate senescent primary human lung fibroblasts (n=4, each condition), and Quiescent cells
(Qui) were used as control. (ii) A timeline indicating treatment days and endpoints for the three different senescence inducers and control
conditions. (B) Bar graph showing the percentage of viable and senescent fibroblasts in the different senescence-induction conditions using
Edu (shown in blue) and SA-B-Gal (shown in red). (C) Summary of significantly altered exosome proteins (g-value < 0.05 and > 1.5-fold
change) in senescent human lung fibroblasts compared to quiescent cells following IR, doxo, and MiDAS senescence induction. (D) Venn
diagram showing overlapping and unique protein signatures of senescent human lung fibroblast exosomes induced by IR, doxo, and MiDAS.
(E) Heatmap displaying the exosome protein fold change averaged across replicates, showing the top 18 altered proteins, increased (red) and
decreased (blue) due to senescence. The intensities averaged for Qui were used as the baseline. ClueGO biological pathways and cell
compartments are presented. BP; Biological process, CC; Cellular compartment. (F) Partial least squares-discriminant analysis (PLS-DA)
clustered senescent fibroblasts from Quiescent control. The two variates explaining the most significant variations are shown. (G) Venn
diagram showing overlapping and unique exosomal SASP (sEVs) and soluble SASP protein signatures of IR-induced senescent fibroblasts.
(H) Enrichment analysis of Gene Ontology/cellular compartments overrepresented among protein contents of senescent fibroblast
exosomes. (l) Venn diagram showing overlapping and unique surface protein signatures of senescent fibroblast exosomes induced by IR,
doxo, and MiDAS. (J) Bar graph showing malondialdehyde cellular content, a product of lipid peroxidation used as a marker for intracellular
oxidative stress measured in the different senescence stimuli.
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Furthermore, we compared our IR-induced senescent
fibroblast exosome proteins with the IR-induced
soluble SASP from our previous study by Basisty and
Schilling et al. [10] and found 152 overlapping proteins,
while 710 proteins were unique to the exosomes (EVs;
Figure 3G and Supplementary Table 3I). Among the
152 common proteins were identified Myosin-9
(MYHY9), Growth/differentiation factor 15 (GDF15),
Interstitial collagenase (MMP1), C-type lectin domain
family 11 member A (CLEC11A), and Metalloproteinase
inhibitor 1 (TIMP1), which were reported to associate
with several traits of aging and constitute a proteomic
signature of aging [28, 29]. Exosome-specific proteins
included Clusterin (CLU), Serpin B5, dynactin subunits
(DCTNs), numerous proteins related to DNA and RNA
metabolism (RNA helicase DDXs, heterogeneous
nuclear ribonucleoproteins  HNRNPs, EIFs, RPs),
proteasome subunits, and vacuolar protein sorting-
associated proteins (VPSs). The significantly altered
senescent fibroblast exosome proteins identified in the
study were categorized based on subcellular locations:
extracellular space (75%), membrane (72%), exosome
(70%), cytosol (56%), plasma membrane (38%), and
cell surface (12%) (Figure 3H). In silico analysis of the
significantly altered senescent exosome proteins
identified 97 out of 1,340 proteins as surface proteins,
of which 30 were consistent in all senescence stimuli
(Figure 31 and Supplementary Table 3J) and included
Neural cell adhesion molecule 1 (NCAMI1), A
Disintegrin and metalloproteinase with thrombospondin
motifs 13 (ADAMTSI13), Neutral amino acid
transporter A (SLC1A4), and Tumor necrosis factor
ligand superfamily member 4 (TNFSF4). These
upregulated senescent surface proteins have the
potential to be developed into aging biomarkers. Our
proteomics data indicated a decrease in antioxidant
proteins in senescent exosomes compared to Qui
controls, which is consistent with the higher intra-
cellular oxidative stress in senescent fibroblasts (Figure
3J). Interestingly, MiDAS induction showed the most
elevated cellular oxidative stress, followed by
doxorubicin (doxo) and irradiation (IR) as shown in
Figure 3J.

Plasma exosomes isolated from an aged human
cohort display unique protein markers

We performed a pilot study using human plasma
samples from five young (20-26 years) and five older
individuals (65-74 years) (Supplementary Table 1) to
determine exosome-specific age signatures. We used
DIA-MS protein identification and quantification to
analyze plasma exosomes from young and elderly
individuals and processed the data using our custom
hybrid spectral library (generated as described above)
(Supplementary Figure 4). We reproducibly identified

and quantified a total of 1,356 protein groups (> 2
unique peptides) (Supplementary Table 4B).

Distinct and separate clustering of protein profiles from
plasma exosomes from young and old individuals were
revealed by PLS-DA (Figure 4A). Volcano plots of old
versus young (old/young) individuals showed 171
significantly altered exosome proteins (g-value < 0.05,
[logofold change| > 0.58), of which 117 were down-
regulated, whereas 54 were up-regulated in the older
individuals (Figure 4B and Supplementary Table 4C). A
selection of key importance up- and down-regulated
aging plasma exosome proteins (26) are shown in
Figure 4C. Top up-regulated proteins included LIM and
SH3 domain protein 1 (LASP1), Hemopexin (HPX),
Eosinophil peroxidase (EPX), Band 3 anion transport
protein (SLC4A1), Leucine-rich alpha-2-glycoprotein
(LRG1), as well as several Serpins. Top down-regulated
proteins were Calmodulin-like protein 5 (CALMLS),
Deoxyribose-phosphate aldolase (DERA), Peroxidasin
homolog (PXDN), Aminopeptidase N (ANPEP), and
Apolipoprotein L1 (APOL1). Out of them, 80% are
classified as exosome proteins, demonstrating the high
yield and purity of the extracted plasma exosomes, and
span nine different biological processes, such as
exocytosis, immune response, signal transduction, and
proteolysis (Figure 4C).

To identify the biological relevance of our results, the
differentially changing exosome proteins in aging
plasma from our DIA-MS analysis were integrated and
highlighted using ConsensusPathDB-human metabolic
pathways and the Gene Ontology (GO) annotation
toolbox. Pathway enrichment analysis indicated
remodeling in the plasma lipoprotein particles,
changes in blood coagulation, negative regulation of
response to wounding, and reactive oxidant activity —
these pathways were significantly upregulated in
plasma exosomes from older individuals. Conversely,
defense response to bacteria, acute inflammatory
response, humoral immune response regulation,
cornification, and intermediate filament cytoskeleton
organization were pathways that were significantly
down-regulated (Figure 4D and Supplementary Table
4], 4K). The significantly altered plasma exosome
proteins identified in the study were categorized based
on subcellular locations: extracellular space (98%),
membrane (64%), exosome (61%), plasma membrane
(42%), cytosol (42%), and cell surface (8%) (Figure
4E). Individual changes in the exosome protein level
of Alpha-1-antitrypsin (SERPINA1) and Leucine-rich
alpha-2-glycoprotein (LRG1) positively correlated
with older age (upregulation), whereas Apolipoprotein
L1 (APOL1) negatively correlated with age
(downregulation) as shown in Figure 4F, which further
implies distinct aging signatures in human plasma.
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Supervised clustering classifies
aging plasma exosomes
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Significant variations in lipid compositions of
exosomes induced by different senescence stimuli

In addition to exosome proteomics, we conducted a
parallel lipidomic analysis of exosomes from senescent
fibroblasts induced by the three senescence-inducing
stimuli. Exosomes enriched by antibodies were subjected
to lipidomic analysis using liquid chromatography ion
mobility separation collision-induced dissociation mass
spectrometry (LC-IMS-CID-MS). By separating lipids

based on their LC retention time, IMS collision cross
section (which is based on the lipid’s three-dimensional
shape), and precursor and fragment ion masses, LC-IMS-
CID-MS analyses can reduce ambiguity and increase
confidence in lipid identification and quantification.
Here, we quantitatively compared lipids from exosomes
released from senescent and control fibroblasts and
cataloged significantly changed lipids (pagj-value < 0.05)
that showed a fold change > 2-fold (senescent/control)
(Figure 5A and Supplementary Table 5A). Lipidomic
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performed using Euclidean distance and complete linkage and log, fold change is illustrated to visualize trends with the three senescence
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profiling revealed a substantial number of statistically
significant exosome lipids in response to the
senescence inductions: with 122 regulated lipids with
IR induction, 135 regulated lipids with doxo induction,
and 129 regulated lipids with MiDAS induction
(yielding a total of 247 changed lipids upon senescence
induction considering all inducers). Notably, most of
the significantly changed exosome lipids were
upregulated in all senescent conditions (Figure 5A).
Although there is variation in the lipids that were up-
and downregulated with senescence, 112 were shared
amongst all inducers (Supplementary Table 5B, 5C).
Furthermore, distinct clustering of senescent and
control fibroblast exosome profiles was revealed by
PLS-DA (Figure 5B). Individual lipid species profiles
are further depicted in the heatmap in Figure 5C. Our
results indicate that membrane lipids, such as
phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS), sphingomyelin (SM),
and hexosylceramide (HexCer) species were
significantly upregulated in senescence conditions.
Specifically,top  up-regulated lipids included
PC(16:0 _22:4), PC(18:0_24:0), PE(O-18:0/22:5),
PE(P-18:0/20:4), PS(18:1_22:0), SM(d18:2/16:0),
HexCer(d18:1/24:0). Our analysis also revealed
senescence stimuli-specific changes in exosome lipids.
Specifically, triglycerides (TG), TG(16:0 _18:1 20:4),
TG(16:1_18:1 20:4);TG(18:2/18:2/18:2), and TG(54:6),
and acylcarnitine (AC) AC(18:0) species were
downregulated with the doxo and IR inducers but
not with MiDAS-induced senescence (Figure 5C).
Additionally, specific PC and PC plasmalogen species
(PC(P-)), PC(P-18:0/20:5) and PC(P-16:0/22:5), were
only upregulated with the MiDAS induction (Figure
5C). Changes in the levels of specific exosome lipids
such as PC (18:0 24:0) and SM (d18:2/16:0) are
further shown to illustrate they are positively correlated
in all three senescent conditions, while TG(54:6) is
denoted for its decrease in only the doxo and IR
inductions (Figure 5D), suggesting unique senescence
lipid signatures in human fibroblasts. Overall, these
significant changes in exosome-specific lipids highlight
that they may play a potential role in the senescence
process.

Exosomes miRNAs are differentially present in
human plasma from young and older individuals

To complement the exosome proteomic and lipidomic
data, we performed in parallel a pilot analysis of
human plasma exosome miRNA cargo to identify
differences between young (20-26 years) and older
(65-74 years) individuals (Figure 1). The length of
miRNA sequences primarily ranged from 18 to 24
nucleotides (Supplementary Figure 5A). In total, 1,375
miRNAs were identified from our SEC/UF-extracted

plasma exosomes (Supplementary Table 6A), of
which, 331 miRNA were consistent. 226 out of 331
miRNA were commonly shared between exosomes
from both young and older individuals, and 88 and 17
were unique to plasma exosomes from old and young
individuals, respectively (Supplementary Figure 5B
and Supplementary Table 6B). Volcano plots of old vs.
young samples revealed six miRNAs to be
significantly altered. hsa-miR-27a-5p, -874-3p, PC-3p-
73204 81, -3p-7719 599, and -3p-8403 561 were
upregulated, and hsa-miR-190a-5p was down-
regulated in older individuals (Supplementary Figure
5C and Supplementary Table 6C), indicating that these
miRNAs have a significant role in aging and could
serve as potential markers of aging. Pathway analysis
of the six significantly altered miRNAs revealed
diverse pathways that could exacerbate underlying
mechanisms of aging (Supplementary Figure 5D).
While it is not entirely clear what the function of these
miRNAs is, it will remain of interest to monitor and
report this important exosome cargo.

Senescence and aging share mutual exosome
signatures that may regulate age-related inflammation
and ECM remodeling, potentially causing secondary
senescence

We demonstrate a substantial overlap between the
exosome proteins identified (52) and altered pathways
between senescent fibroblasts and plasma from older
individuals (Figure 6B). Differential profiles of selected
exosome proteins in aging and senescence, such as
Antithrombin-III  (SERPINC1), Prothrombin (F2),
Coagulation factor V (F5), Plasminogen (PLG), Reelin
(RELN), Soluble scavenger receptor cysteine-rich
domain-containing protein SSC5D, Complement CI
subcomponents (Clr and Cls), and HLA class I
histocompatibility antigen, A-24 alpha chain (HLA-A),
showed complementary trends and were particularly
associated with inflammation and ECM remodeling
(Figure 6B). Our DIA-MS proteomics analysis of
senescent fibroblasts identified Plasminogen activator
inhibitor 1 (SERPINE1), SPARC, Insulin-like growth
factor-binding protein 7 (IGFBP7), Transforming growth
factor beta-1 proprotein (TGFB1|1), and Integrin alpha-4
(ITGA4) as potential exosome protein candidates
that can cause secondary senescence locally and
distally (Figure 6A). Our lipidomics data revealed
the presence of lipids such as hexceramides
HexCer(d18:1/24:0), HexCer(d18:1/24:1), and HexCer
(d18:2/24:0), which induce secondary senescence [30],
and lysophosphatidylcholine (LPC) class lipids that are
involved in ECM modulation through metalloproteins.
When comparing to the three different senescence-
inducing stimuli on IMR90 cells, we saw similarly
affected pathways with human plasma exosome aging.
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We observed a decrease in antioxidant and matrisome
proteins, but more interestingly changes in inflammatory
and ECM-modifier associated proteins (Figure 7), that
play crucial roles in senescence. Dysregulation of the
ECM composition, shape, firmness, and abundance
contribute to pathological conditions, such as fibrosis
and invasive cancer.

DISCUSSION

In recent years, several studies highlighted that the SASP
secreted from senescent cells is highly complex and very
heterogeneous depending on tissue type, cell type and
origin of senescence or senescence induction [10, 31].
The composition of SASP can vary depending on a wide
range of factors, including cell type, senescence-inducing
stimuli, and age. While there has been significant
progress in understanding SASP and its effect on
neighboring cells and the extracellular matrix, what is
currently known is just the tip of the iceberg. Exosomes
have been recognized as a constituent of the SASP
and are known to play a crucial role in facilitating
intercellular  communication. Exosomes  secreted
from senescent cells are still relatively underexplored.
Understanding the complexity, cell-, tissue-, and stimuli-
specificity of exosomes from senescent cells could offer
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essential insights into the mechanisms underlying the
progression of senescence, aging, and age-related
diseases. These insights could lead to the development of
potential diagnostic and therapeutic interventions.

We have laid out a comprehensive and quantitative
DIA-MS proteomic workflow for exploring exosome
profiles from different senescence-inducing stimuli in
cells and plasma. Isolation and enrichment of intact
and contamination-free exosomes are challenging, but
we propose that exosomes isolated by sequential SEC
and UF improve the accuracy and reliability of
downstream proteomics analysis. This is based on
specific sizes and surface markers that distinguish
exosomes from other extracellular vesicles and low
levels of protein contaminants, which can interfere
with downstream analysis (Figure 2). This approach
led to the identification of 60-70% exosome-specific
proteins in IMR90 fibroblasts (Figure 3) and plasma
(Figure 4).

The limited availability of high-quality exosome
libraries is another challenge. Spectral library searching
is a prerequisite for DIA quantitative proteomic analysis.
We present three high-quality human plasma exosome
spectral libraries (DDA, directDIA, and hybrid),
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cataloging around 2,700 high-confidence proteins
as a resource for exosome proteomic research (Sup-
plementary Figure 2). The hybrid library identified
considerably more significantly altered proteins, while
the directDIA approach is instrumental in cases where
no pre-existing large libraries are available, such as in
non-model organisms or tissues. We emphasize the
significance of comprehensive quantitative workflows
using DIA-MS proteomics for exosome research. These
mass spectrometric approaches offer highly robust
workflows for biomarker discovery in clinical samples,
and specifically for biofluids and circulating biomarkers.
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and differences in the composition, which can illuminate
how the SASP components propagate and exacerbate the
senescent phenotype.

Our examination of SASP protein profiles in plasma
samples from older individuals has provided us with a
more comprehensive understanding of the changes in
intercellular communication that occur with aging. We
like to point out that this work represents a proof-of-
principle study utilizing a relatively small human cohort
of 10 participants (future larger studies will follow).
This analysis - presented here - encompasses exosomes
derived from all cell types, tissues, and senescence
stimuli. In our study, we have identified 1,288 and 119
exosome-specific proteins unique to senescent fibro-
blasts and plasma samples from aging cohorts
respectively, while 52 proteins are common to both
(Figure 6B). By cross-analyzing exosomes derived from
plasma and cells, we could begin to dissect their
endocrine and paracrine mode-of-action in the context
of senescence [4], which might potentially play a role in
secondary senescence. Johnson et al. (2020) conducted
a meta-analysis of 36 proteomics studies, identifying
818 aging-associated soluble proteins in the plasma
proteome that were altered in at least two studies [32].
Of these, 28 proteins overlapped with our age-
associated plasma exosome panel, 228 proteins
overlapped with our exosomal SASP components, and
notably, 14 proteins were common across all three
datasets, as shown in Supplementary Figure 6 and
Supplementary Table 7. The limited overlap in proteins
can be attributed to two main factors: first, we are
comparing exosomal SASP components and age-
associated plasma exosome proteins with age-related
soluble plasma proteins; second, our data were
generated using mass spectrometry, whereas the
Johnson et al. data were compiled from 36 studies using
diverse proteomics methods.

Interestingly, several variants of immunoglobulins
(n=61, as presented in Supplementary Table 4C) show a
strong negative correlation with aging. It suggests that
the humoral immune response is downregulated in older
individuals, which may contribute to the increased
susceptibility to infections and diseases associated
with aging (Figure 4G). The downregulation of
immunoglobulins in plasma exosomes from older
individuals is consistent with previous studies that have
reported age-related changes in the immune system,
including a decline in B cell function and decreased
antibody production. In contrast, SASP sustains and
enhances inflammation, which is a broad immune
response to tissue injury, infection, or other stimuli.
While inflammation can be beneficial in response to
acute infections or injuries, chronic inflammation can
contribute to various age-related diseases. For example,

exosomes released by prostate cancer cells carry
pro-inflammatory M2 phenotype and promote a
pro-tumorigenic microenvironment [33]. Here we
demonstrate that the specific inflammatory proteins that
are upregulated in the exosomal SASP components can
vary depending on the senescence-inducing stimulus,
but some common examples are serine protease
inhibitors (SERPIN family, SERPINC1), Prothrombin
(F2), Coagulation Factor V (F5), Reelin (RELN),
Disintegrin and metalloproteinase with thrombospondin
motifs 12 (ADAMTS12), Thrombospondin-1 (THBSI),
Complement C3, and Complement C5 (Figures 6, 7).
Further, we observed decreased levels of antioxidant
proteins in senescent exosomes (Figure 7). Biochemical
analysis reveals an overall increase in intracellular
oxidative stress in all senescent conditions, the highest
being in MiDAS (Figure 3J). Chronic oxidative stress
and inflammation are closely linked and can lead to the
development and progression of many age-related
diseases, such as cancer, cardiovascular diseases, and
neurodegenerative  disorders [34]. In addition,
inflammatory signals can degrade ECM components
and alter the ECM structure [35].

Changes in the extracellular matrix (ECM) play a
crucial role in senescence and cancer, as senescent cells
alter the ECM by secreting ECM remodeling
components. However, the molecular understanding of
the interplay between ECM and senescent cells is
limited. Our study revealed that exosomes secreted by
senescent cells exhibit decreased level of ECM
structural proteins, including collagens, laminins, and
Fibrillin-2 (Figure 7). This suggests a potential
mechanism by which senescent cells destabilize the
ECM, contributing to the propagation of a senescent
microenvironment. In addition, a decreased abundance
in collagen mRNA levels is noted in senescent retinal
pigment epithelial cells, which are major ECM
producers in the retina, and hematopoietic stem cells
[36]. ECM alterations are widely recognized as a
significant factor driving abnormal cellular responses
[37], and recent research indicates that fragmentation of
collagen fibrils during aging leads to the disruption of
fibroblast-ECM interactions [38]. This disruption can
contribute to the development of an “aged” phenotype.
Our findings and those of others strongly suggest that
ECM and senescence play a critical role in aging.

Inflammation and ECM modulation might be two key
factors contributing to secondary senescence, leading to
the accumulation of senescent cells and further
promoting inflammation and ECM remodeling. Recent
studies suggest that SEVs can transfer senescent factors
to non-senescent/healthy cells [13, 39]. We identified
multiple proteins, lipids, and miRNAs relevant to
paracrine senescence signaling that are upregulated in
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exosomes released by senescent fibroblasts. Notable
secondary signals include integrin alpha-4 [40],
SERPINEL1 [41, 42], insulin-like growth factor-binding
protein 7 [43, 44], transforming growth factor beta-1
proprotein [45], SPARC [46], and hexceramides
(HexCer) [30]. Additionally, miRNAs such as miR-483-
5p [26], miR-532-3p [26], and miR-409-3p [47] were
consistently elevated. Our studies offer valuable
insights into the potential role of exosomes in SASP-
mediated paracrine senescence, offering potential
therapeutic targets for mitigating its effects.

Our lipidomic analysis revealed consistent upregulation
of phospholipid classes, including phosphatidylcholine
(PC) and phosphatidylethanolamine (PE), aligning with
previous studies in senescent cells [48]. Furthermore,
we observed significant increases in PS, SM, and ether-
linked/plasmalogen PE species (PE(O/P-)) across all
senescence inducers, implicating altered exosomal lipid
composition in senescence-associated changes in
cellular functions, particularly membrane dynamics.
Conversely, lower levels of specific triglycerides (TG)
and acylcarnitines (AC) were noted, except in MiDAS-
induced senescence, possibly reflecting reduced TG
accumulation [49] and decreased AC synthesis during
senescence. Finally, while 112 lipids were commonly
altered across all senescence inducers, distinct lipid
signatures were observed for specific stimuli, such as
doxo (7 unique lipids) and MiDAS (9 unique lipids;
Supplementary Table 5C), highlighting stimulus-
specific molecular mechanisms of senescence. These
findings deepen our understanding of exosome-
mediated signaling in senescence and point toward
tailored approaches for therapeutic intervention.

Increasing evidence of age-associated changes in
miRNA levels is seen in various models, ranging from
nematodes to humans [38]. We reproducibly identified
88 unique miRNAs, including miR-27a-5p, -874-3p, in
plasma exosomes from older individuals. An
upregulation of miR-27a is reported in degenerative
diseases such as osteoarthritis [50] and AD [51].
Moreover, miR-874 was identified in circulating brain
fluid from patients with mild cognitive impairment [52]
and as a biomarker for early AD development [52, 53].
These miRNAs could be developed into future
senescence biomarkers.

Further investigations within larger aging populations,
longitudinal analysis, and assessing differences between
men and women are needed to confirm the potential of
these protein, lipid, miRNA candidate signatures as
diagnostic and prognostic biomarkers. We also
acknowledge that this study and future multi-omics
work analyzing exosomal SASP components provide
opportunities and the need for functional experiments to

assess the impact of these exosomes on healthy cells
(potential bystander senescence). Understanding these
signaling processes from cell to cell or even from organ
to organ (for circulating exosomes in biofluids) will
provide system-wide insights into human biology.
Overall, we describe an exosome DIA-proteomic and
multi-omic workflow for exploring exosome profiles
from cells and plasma. We emphasize the power and
potential of using DIA-MS proteomic data analysis for
exosome research as a highly robust workflow for
biomarker discovery in clinical samples. Our study
reveals that the exosomal SASP components exhibit
considerable heterogeneity, and we systematically
report the changes in exosome cargo, specifically
proteins, lipids, and miRNAs, between young and old
individuals and senescent fibroblasts induced by IR,
doxo, or MiDAS. We also report that exosomes may be
critical players in mitigating senescence and aging by
inflammation, oxidative stress, ECM modulation, and
secondary senescence. Additional investigations and
functional validations are required to ascertain the
mechanisms by which exosomes mediate their effects in
the context of senescence and aging and understand
how the senescence- and age-associated exosome
cargos can impact the recipient cells. This can help
understand the global molecular mechanisms under-
lying aging and age-related diseases and potentially
identify novel therapeutic targets or biomarkers to target
and regulate senescent cell-secreted exosomes or use
them as therapeutic agents.

MATERIALS AND METHODS
Human plasma samples

We obtained 10 plasma samples, 5 from young
individuals (20-26 years old) and 5 from older
individuals (65-74 years old), with no restrictions
regarding sex (sex unknown), from the Blood Centers
of the Pacific in San Francisco, CA, detailed in
Supplementary Table 1. Specimens from individuals
with any known autoimmune disorders, chronic
diseases, bleeding disorders, or neurodegenerative
disorders were excluded. The plasma samples were
aliquoted and stored at -80° C until further use. IRB
approvals were not required for plasma samples.

Primary human fibroblast tissue culture and
senescence induction

(a) Primary human fibroblast tissue culture

Primary human lung fibroblasts (IMR-90) used in the
study were acquired from ATCC, Manassas, VA,
(#CCL-186). Cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with
penicillin and streptomycin (5,000 U/mL and 5,000
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pg/mL; Thermo Fisher Scientific, Waltham, MA,
#15070063) and 10% fetal bovine serum (FBS; Thermo
Fisher Scientific, #2614079), and incubated at 37° C in
an atmosphere of 10% CO> and 3% O,.

(b) Senescence induction in primary human
fibroblasts

Irradiation (IR), doxorubicin (doxo), and Antimycin A
induced-mitochondrial dysfunction-associated senescence
(MiDAS) were used to induce senescence in IMR90
cells. For IR induction, the cells were irradiated with
ionizing radiation (10 Gy) for 30 minutes. For doxo
induction, the cells were treated with 350 nM doxo
(Thermo Fisher Scientific #25316-40-9) for 24 h. For
MiDAS induction, 200 uM Antimycin A (AA; Thermo
Fisher Scientific # 1397-94-0) was supplemented to the
complete media every alternate day for 10 d. After
senescence induction, the cells were cultured for 10 d to
allow the senescent phenotype to develop. The
conditioned media was collected for exosome analysis
after the cells were washed with phosphate-buffered
saline (PBS; Gibco™ #10010023) and placed in serum-
and phenol-red-free DMEM media for 24 h. In parallel,
the control cells were made quiescent by incubating in
0.2% serum (minimal media) for 3 d by mock irradiation
or treated with DMSO in 0.2% serum for 1 d. Sub-
sequently, senescence-induced and control fibroblasts
were placed in serum- and phenol-red-free DMEM media
for 24 h before collecting the conditioned media for
exosome analysis.

(c¢) Cell viability assays

On day 10 for senescence-inducers or day 3 for control
quiescent cells (as shown in Figure 3A (ii)), cell
viability was assessed using SYTOX Green (Invitrogen,
Carlsbad, CA, #S7020). The protocol recommended by
the manufacturer was followed, which involved staining
the cells with SYTOX, and counting the nuclei that
exhibited staining to indicate cell death using a
fluorescent microscope (Evident, #Olympus IX70
Fluorescence) with a wavelength of 523 nm.

(d) EdU and SA-$-Gal staining

The activity of SA-B-gal (senescence-associated [3-
galactosidase) was determined using a BioVision
Senescence Detection Kit (Milpitas, CA, #K320-250),
which is specifically designed to measure the activity of
lysosomal [-galactosidase enzyme that is known to
increase significantly in senescent cells. To perform the
assay, 7000 cells for each condition, including
replicates, were seeded into 8-well culture slides coated
with poly-lysine (Corning, Corning, NY, #354632).
After 24 h, the cells were stained with the SA-B-gal
detection reagent according to the manufacturer’s
protocol. In addition to measuring SA-B-gal, we
evaluated cell proliferation using the Click-iT EdU Cell

Proliferation Assay Kit (Invitrogen, #C10337). This kit
utilizes a thymidine analog, EdU, which is incorporated
into newly synthesized DNA during the S-phase of the
cell cycle. The cells were treated with 10 uM EdU for
24 h, then fixed and permeabilized. The incorporated
EdU was detected using a Click-iT reaction cocktail that
binds to the EAU and produces a fluorescent signal. The
EdU and SA-B-Gal stained cells were then imaged using
a Fluorescence microscope (Olympus USA, # 1X70)
and quantified using Image J software (I1J 1.46r, NIH).
Overall, EAU and SA-B-Gal assays allow for measuring
both senescence and cell proliferation in response to
different senescence induction.

(e) NAD+/NADH ratio determinations

We measured NAD+ and NADH levels of Antimycin A-
treated MiDAS-induced senescent, and Qui control
IMRO0 cells using a commercial colorimetric NAD/
NADH Assay Kit (Abcam, UK, #ab65348). The assays
were performed in biological triplicate, with 2 X 10°
IMRO90 cells lysed in NAD/NADH extraction buffer by
two freeze/thaw cycles (20 minutes on dry ice followed
by 10 minutes at RT), followed by centrifugation (14,000
X g for 5 min at 4° C) and filtration (10 kDa cut-off
filters, MilliporeSigma™, #UFC501024) to remove
cellular debris and proteins. The resulting supernatant
was then subjected to a series of enzymatic reactions that
converted NADH to a fluorescent product (absorbance at
450 nm) as per the manufacturer’s instructions, allowing
for quantitative measurement of the NAD+/NADH ratio.

() Oxidative stress measurements

Lipid peroxidation is a common consequence of
oxidative stress. A lipid peroxidation assay kit (Abcam,
UK, #ab233471) was used to measure cellular oxidative
stress in IR-, doxo-, and MiDAS-induced senescent
fibroblasts. Qui or DMSO fibroblasts were used as a
control for comparison. Briefly, 5 X 10° cells in
triplicates for each condition were homogenized in 500
pL of 20mM Na Phosphate buffer (pH about 3 to 3.2)
and 0.5% TritonX-100 to solubilize the cell membranes,
followed by centrifugation (14,000 X g for 5 min at 4° C)
to remove cellular debris. The resulting supernatant was
then subjected to a series of chemical reactions per the
manufacturer’s instructions to produce a colored product,
which was quantified spectrophotometrically at 695 nm.

Exosome isolation and enrichment

(a) Human plasma

Ultracentrifugation (UC), sequential SEC coupled with
either ultrafiltration (SEC/UF) or ultracentrifugation
(SEC/UC) was used to isolate and enrich exosomes
from plasma. Plasma was centrifuged at 3,000 x g for
10 min to remove cellular debris and then centrifuged at
10,000 x g for 10 min to remove apoptotic cell bodies.
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The supernatant (2 mL) containing extracellular vesicles
was then proceeded by UC, SEC/UF, or SEC/UC.

For SEC, the supernatant was passed through a qEV
size-exclusion column (Izon, #qEV35) for exosome
enrichment, according to the manufacturer’s instructions.
Briefly, the column was maintained at room temperature
for 20 min before use and then activated by flushing with
1.5x column volume of degassed PBS (~60 mL). The
supernatant was passed through the activated qEV size
exclusion columns (by gravity drip). Different fractions
were collected by filling the reservoir with PBS (~50
mL). The initial 14 mL of flow-through was void
volume, while the subsequent 10 mL (collected in 5 x 2
mL centrifuge tubes: labeled as E1-5) was enriched
exosome fractions based on immuno-blotting with
exosome-specific protein markers (Figure 2). The
remaining 26 mL was marked as the post-exosome
fractions that contained plasma proteins. qEV size-
exclusion exosome fractions (E1-5) were quality-checked
spectrophotometrically (SpectraMax Plus 384, Molecular
Devices, San Jose, CA), where OD600 was used for
exosome quantification and OD280 for plasma proteins.
Based on higher plasma protein contamination in fraction
ES5, we pooled only fractions E1-E4 to obtain highly pure
exosomes. Subsequently, fractions E1-E4 were concent-
rated by ultrafiltration (UF; Amicon® Ultra 50 kDa, #
UFC903024) or ultracentrifugation (Optima, The Beck-
man Coulter Life Sciences) for further exosome analysis.

(b) DMEM-conditioned media

50 mL of conditioned media from IR, doxo, MiDAS-
senescent, and Qui-control IMR90 cells were centri-
fuged at 3,000 x g for 10 min to remove any cell debris.
The supernatant was passed through a 50 kDa cut-off
filter. PBS was added to the remaining filtrate to make
up to 2 mL. The filtrate was then centrifuged at 15,000
x g for 30 min to remove apoptotic cell bodies and
proceeded with either SEC/UF or Antibody-based
extractions (AbE). For SEC/UF, the supernatant was
passed through a size exclusion chromatography
column followed by ultrafiltration to enrich and purify
the exosomes, as described previously.

For AbE enrichment a Miltenyi Biotec exosome
isolation kit (Miltenyi Biotec, San Diego, CA, #130-
110-912) was used to label the exosomes with magnetic
microbeads that specifically bind to exosome surface
markers. Briefly, 2 mL of filtrate was added to 50 pL
of magnetic microbeads and incubated for 1 h at
room temperature on a rotor. A micro-column was
equilibrated with 100 pL of equilibration buffer and
washed thrice with 100 pL of isolation buffer. The
labeled exosomes were then passed through a micro-
column, and the exosomes were selectively retained on
the column while other non-exosome particles were

removed. Finally, the exosomes were washed 4x with
100 pL isolation buffer and eluted with 200 pL of
elution buffer. We used SEC/UF for proteomics
analysis, while AbE was used for lipidomics studies.

Exosome quality check

(a) Size distribution analysis

Exosome diameter was assessed by tunable resistive
pulse sensing (TRPS) on an Izon ¢Nano Gold
nanoparticle characterization instrument using an
NP150 nanopore membrane at calibration with 110-nm
carboxylated polystyrene beads at a concentration of 1 x
10'° particles/mL (Zen-bio, Research Triangle, NC).

(b) Immunoblotting

Exosomes were lysed in RIPA buffer (Thermo Fisher
Scientific™, #89900) for protein extraction. Exosome
proteins were quantified using BCA (Thermo Fisher
Scientific™, #23225). 20 ug of protein/well was separated
on 12% SDS-PAGE and transferred onto PVDF
membranes under semi-dry conditions using the Trans-
Blot Turbo Transfer System transfer unit (Bio-Rad,
#1704150). Ponceau S staining (Sigma-Aldrich, #P7170-
IL) confirmed equal loading of exosomal proteins.
Immunoblotting was performed using 1:1000 dilution of
CD9 (Abcam, #Ab96696), Tumor susceptibility gene 101
(TSG101, Santa Cruz Biotechnology, #sc-7964), albumin
(Abcam, #ADb106582), or Immunoglobulin G (IgG,
Abcam, #Ab200699), and anti-rabbit HRP-conjugated
antibody (Bio-Rad, #1706515) or anti-mouse HRP-
conjugated antibody (Abcam, #Ab6728) as a secondary
antibody (1:3000 dilution). Blots were developed per the
manufacturer’s protocol with the Pierce ECL Western
Blotting Substrate (Thermo Fisher Scientific, #321006).
Imaging was performed by Azure Biosystems c600.
Densitometric analysis of bands was performed using
Image J software (1J 1.46r; NIH).

Mass spectrometric analysis of exosome proteins

(a) Protein extraction and trypsin digestion

Plasma exosomes were lysed in lysis buffer (8 M urea,
0.1 M ammonium bicarbonate), and then reduced by 10
mM  tris(2-carboxyethyl) phosphine (TCEP) and
alkylated using 40 mM chloroacetamide (CAA) for 1 h
at 37° C. The solution was diluted with 0.1 M
ammonium bicarbonate buffer to lower the urea
concentration to 1.5 M and digested with trypsin
(Promega, Madison, WI, # V5111) at a 1:100 ratio
(protease to protein (wt/wt)) overnight at 37° C.
Peptides were purified using MacroSpin clean-up
columns (NEST group, Southborough, MA, # SEM
SS18V), following the manufacturer’s protocol. Eluted
peptides were vacuum dried and then resuspended in 60
pL of 1% acetonitrile acidified with 0.1% formic acid
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buffer spiked with iRT peptides (Biognosys, Schlieren,
Switzerland, # Ki-3002-1). Peptides were quantified
using nano-drop (Spectrostar Nano, BMG Labtech, #
UV5Nano) and adjusted to a 1 mg/mL concentration.

IMRI0 cell exosomes were lysed in the lysis buffer (5%
SDS and 50 mM TEAB), reduced, alkylated, and
acidified to a final concentration of 1.2% phosphoric
acid. Then 90% methanol in 100 mM TEAB was added
and passed through micro S-Trap columns (Protifi,
#C02-micro-80). IMR90 exosome proteins trapped in
the S-Trap columns were digested with trypsin
(Promega, Madison, WI, # V5111) in digestion buffer
(50 mM TEAB, pH ~8) at a 1:25 ratio (protease to
protein (wt/wt)) overnight. Peptides were eluted from
the S-Trap column with 50 mM TEAB and 0.5% formic
acid and then with 50% acetonitrile in 0.5% formic
acid. Pooled elution solutions were dried in a speed vac
and resuspended in 0.2% formic acid. The resuspended
peptide samples were desalted, concentrated, and
resuspended in aqueous 0.2% formic acid containing
‘Hyper Reaction Monitoring’ indexed retention time
peptide standards (iRT, Biognosys, #Ki-3002-1).

(b) Reversed-phase fractionation (RP) for deep
spectral library generation

For DDA library generation, 400 pg of plasma exosome
peptides (pooled from 10 different plasma exosome
samples) were injected into Dionex Ultimate 3000 LC
(Thermo Fisher Scientific) coupled to ACQUITY
UPLC CSH1.7 mm Cis column (2.1 x 150 mm)
(Waters, Milford) for fractionation using RP. Peptides
were chromatographically separated in a 30-min non-
linear gradient from 1% to 40% RP buffers (Buffer B:
100% ACN; Buffer A: 20 mM ammonium formate, pH
10). A micro fraction was taken every 45 seconds,
pooled into 24 final peptide fractions, vacuum dried,
resuspended in 20 mL buffer A spiked with iRT
peptides, and quantified. Each fraction was acquired in
DDA mode, as described below.

(c) LC-HCD-MS-based exosome proteins data
acquisition

2 ug of trypsin-digested plasma exosome peptides were
separated using liquid chromatography coupled to a
mass spectrometer. The analytical column was in-house
packed into a fritted tip emitter to a length of 50 cm (ID
75 um) (New Objective, Woburn, MA) using the CSH
Cig phase (1.7 um) (Waters, Milford, MA). The column
was operated using an Easy nLC 1200 (Thermo Fisher
Scientific, San Jose, CA) coupled online to an Exploris
480 spectrometer (Thermo Fisher Scientific). Peptides
were eluted at 250 mL min™! using a non-linear 2-h
gradient from 1% to 45% buffer B (Buffer B: 80% ACN
+ 0.1% FA; Buffer A: 0.1% FA). Based on the RP
samples, the mass spectrometer was operated in a data-

dependent mode for DDA library generation. Briefly,
the following settings were applied: MS1 scan
resolution: 60,000; MS1 AGC target: 300; MSI1
maximum IT: 25 ms; MS1 scan range: 350-1650 Th;
MS2 scan resolution: 15,000; MS2 AGC target: 200;
MS2 maximum IT: 25 ms; isolation window: 4 Th; first
fixed mass: 200 Th; NCE: 27; minimum AGC target:
le3; only charge states 2 to 6 considered; peptide
match: preferred; dynamic exclusion time: 30 s.

In DIA mode, all samples were acquired in a randomized
fashion with regard to the different conditions: young
and old. The mass spectrometer was operated using the
following parameters for the MS1 scan: scan range: 350
to 1650 Th; AGC target: 300%; max injection time: 20
ms; scan resolution: 120,000. The MS1 was followed by
targeted MS2 scan events with the following settings:
AGC target: 1000%; max injection time: 54 ms; scan
resolution: 30,000; scan range: 350-1,650 m/z Th;
normalized collision energy: 27. The number of DIA
segments and the segment widths were adjusted to the
precursor density and to achieve optimal data points
across each peak for each acquisition (Supplementary
Table 8A). The DIA methods consisted of 40 DIA
segments with a cycle time of 3.2 s.

IMR-90 exosome peptides were separated on a Dionex
UltiMate 3000 system, and DIA-MS acquisition was
performed on an Orbitrap Eclipse Tribrid mass
spectrometer (Thermo Fisher Scientific, San Jose, CA).
The solvent system consisted of 2% ACN, 0.1% FA in
H>O (solvent A), and 98% ACN, 0.1% FA in H,O
(solvent B). Proteolytic peptides (50 ng) were loaded
onto an Acclaim PepMap 100 C;s trap column (0.1 x 20
mm, 5 um particle size; Thermo Fisher Scientific) for 5
min at 5 pL/min with 100% solvent A. Peptides were
eluted on an Acclaim PepMap 100 C;s analytical column
(75 pm x 50 cm, 3 pm particle size; Thermo Fisher
Scientific) at 300 nL/min using the following gradient of
solvent B: 2% for 5 min, linear from 2% to 20% in 125
min, linear from 20% to 32% in 40 min, up to 80% in 1
min, 80% for 9 min, down to 2% in 1 min, and 2% for 29
min, for a total gradient length of 210 min. Full MS
spectra were collected at 120,000 resolution (AGC target:
3e6 ions, maximum injection time: 60 ms, 350-1,650
m/z), and MS2 spectra at 30,000 resolution (AGC target:
3e6 ions, maximum injection time: Auto, NCE: 27, fixed
first mass 200 m/z). The isolation scheme consisted of 26
variable windows covering the 350-1,650 m/z range with
an overlap of 1 m/z (Supplementary Table 8B) [54].

(d) Exosome protein spectral library generation from
DDA and DIA

Three spectral libraries were generated i) a deep DDA-
based spectral library, ii) a DIA-only spectral library
(directDIA), and iii) a hybrid spectral library (hybrid)
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(Figure 1). The DDA deep spectral library was generated
by performing DDA analysis on 25 RP fractions
representing fractions from a pooled mixture of peptides
obtained from the same 10 plasma exosome protein
samples (n = 5, young and old each). DDA raw files
(n = 25) were individually searched with Pulsar in
Spectronaut version 14.0.200601.47784 (Biognosys)
against the Human UniProt FASTA (downloaded on
January 31, 2018, containing 92,931 proteins) using the
following settings: fixed modification: carbamidomethyl
(C); variable modifications: acetyl (protein N term),
oxidation (M); enzyme: trypsin/P with up to two missed
cleavages. Spectronaut automatically determined mass
tolerances and other settings were set to default. Search
results were filtered using a 1% false discovery rate on
the precursor ion, peptide, and protein levels [55, 56].
For the directDIA spectral library, 10 individual DIA
acquisitions of plasma exosomes (n = 5, young and old
each) were processed using Pulsar in Spectronaut
version 14.0.200601.47784 using the same human
FASTA file and settings as above. We combined both
DDA and directDIA libraries for the hybrid library
generation in Spectronaut. All Spectronaut parameter
settings were uploaded to the data repository.

(e) DIA data processing and quantification

Quantitative analysis was performed by processing
protein peak areas determined by the Spectronaut
software. Prior to library-based analysis of the DIA
data, the DIA raw files were converted into htrms files
using the htrms converter (Biognosys). MS1 and MS2
data were centroided during conversion, and the other
parameters were set to default. For the human plasma
exosome cohort, the htrms files were analyzed with
Spectronaut (version: 14.0.200601.47784, Biognosys)
using the previously generated libraries to perform
quantitative data analysis with the three libraries
generated (see above): the directDIA library, the deep
DDA spectral library, and the hybrid library. Briefly,
calibration was set to non-linear iRT calibration with
precision iRT selected. DIA data was matched against
the described spectral library supplemented with decoys
(library size fraction of 0.1) using dynamic mass
tolerances. Quantification was based on MS/MS XICs
of 3-6 MS/MS fragment ions, typically y- and b-ions,
matching specific peptides in the spectral library.
Interference correction was enabled on MS1 and MS2
levels. Precursor and protein identifications were
filtered to 1% FDR, estimated using the mProphet
algorithm, and iRT profiling was enabled.
Quantification was normalized to the local total ion
chromatogram. Exosome proteins identified with less
than two unique peptides were excluded from the
analysis. The DIA data was processed for relative
quantification comparing peptide peak areas from
different conditions (old vs. young plasma and

senescent vs. Qui control IMR90 fibroblasts).
Differential analysis was performed applying paired t-
test, and p-values were corrected for multiple testing.
Protein groups with g-value < 0.05 and log, ratio > 0.58
were considered significant. For the IMR90 exosome
cohort, DIA data were analyzed with Spectronaut
(version: 15.1.210713.50606, Biognosys) without a
spectral library using the directDIA algorithm. Similar
settings were applied for DIA data processing and
differential analysis.

Mass spectrometric exosome lipid analysis

(a) Exosome lipid extraction

AbE-based enriched exosome lipids were extracted by a
modified Folch extraction method [57, 58]. Briefly, 200
pL of fibroblast (IMR-90) exosomes in methanol were
also transferred into a 1.7 mL Sorenson microcentrifuge
tube (# 89082-332) for lipid extraction. The IMR90 cell
exosome count ranged from 10-13 million and was used
for IMR90 sample normalization. Each IMR90
exosome sample (200 pL) was initially diluted in 200
pL in Optima LC-MS grade methanol, where the
IMRO90 cell exosomes were normalized to 10 million
exosomes present. Each sample was dried in a Thermo
Fisher Scientific Speedvac SPD130DLX (San Jose, CA)
for 30 min, and then 750 pL of chilled methanol was
added to each tube. The samples were then transferred
to a 2.0 mL bead tube that contained 2.4 mm tungsten
carbide beads (Thermo Fisher Scientific, #15-340-153)
before being placed into a Fisher Brand Bead Mill 24
Homogenizer (#15-340-163) for 2 min at a frequency of
30 Hz for 2 cycles. Each sample was then placed into a
5.0 mL glass vial (Thermo Fisher Scientific, #528023)
equipped with a Teflon-lined cap, and 750 pL of
methanol was added. Next, 3.0 mL of chloroform
(Sigma Aldrich LC-MS grade) and 200 pL of ultrapure
water (Optima LC-MS grade) were added to induce
phase separation. Samples were then vortexed with a
VWR Standard Heavy-Duty Vortex Mixer for 30 s
before being placed in a Branson CPX5800H sonicator
for 30 min at room temperature. Once completed, the
samples were incubated at 4° C for 1 h to achieve the
phase separation. For each sample, 1.20 mL of water
was added, and mixed gently. Next, the samples were
placed in an Eppendorf 5810R Centrifuge and
centrifuged at 1000 rpm for 10 min. Finally, 300 pL of
the bottom organic layer of each sample was collected
and dried in a speed vac for approximately 40 min until
dry. The total lipid extracts were finally reconstituted
with 190 pL of methanol and 10 pL of chloroform and
stored at -20° C until mass spectrometric analyses were
conducted the following week. Before mass
spectrometric measurements, stored samples were dried
and reconstituted in the 190 pL:10 pL methanol:
chloroform solvent mixture.
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(b) LC-IMS-CID-MS-based exosome lipids data
acquisition

An Agilent 1290 Infinity II UHPLC (Santa Clara, CA)
coupled with an Agilent 6560 IM-QTOF mass
spectrometer (Santa Clara, CA) was used for the LC-
IMS-CID-MS analysis of IMR90 exosome lipids [59].
For the exosome lipid acquisition, 10 pL of extracted
exosome lipids were injected onto a reversed-phase
Waters CSH column (3.0 mm x 150 mm x 1.7 pm
particle size) and chromatographically separated over a
34 min gradient period (Mobile Phase A: 10 mM NH4AC
in ACN/H2O (40:60); Mobile Phase B: 10 mM NH4
ACN/IPA (10:90)) at a flow rate of 250 pL/min [60].
Details regarding the gradient and column wash are
provided in Supplementary Table 8C. Lipids were
subsequently analyzed using positive and negative
ionization modes using an Agilent Jet Stream ESI source
(Agilent Technologies, Santa Clara, CA). The lipids were
focused, trapped, and pulsed into the IMS drift cell using
a high-pressure and trapping ion funnel with pressures ~4
torrs [59]. Ions were then separated with drift tube IMS
(DTIMS) in the 78 cm drift tube following the ion funnel.
Ions were then transferred to a hexapole collision cell
where alternating precursor and all-ions fragmentation
scans were acquired. Collision energies for the collision-
induced dissociation (CID) analyses were ramped based
on the various IMS drift times for the different lipid
species of interest, providing optimized fragmentation for
the varying ion sizes as well as 1+ and 1- charge states
[61]. The collision energy ramp applied based on IMS
drift time is shown in Supplementary Table 8D. Finally,
various ion optics transferred the ions to the time-of-
flight (TOF) mass spectrometer. The TOF mass
spectrometer was set to evaluate a mass range of 50 to
1700 m/z, and the LC, IMS, and MS information were
collected in an Agilent .d file. Brain total lipid extract
(BTLE; Avanti Polar Lipids, Alabaster, AL #131101C)
was used as quality control (QC) for the LC, IMS, and
MS values and observed peak abundances.

(c¢) Lipid Identification

For lipid identification, we considered LC retention
times, IMS collisional cross section (CCS), and m/z
values of the precursor and fragment ions with Skyline
software and a lipidomic plasma library comprising 516
unique lipids published previously [62]. These lipids
were all experimentally validated with LC, IMS, and
MS information. Speciation of the lipids included the
headgroup and fatty acyl (FA) components (e.g., PE
(16:0_18:0)) but did not account for double bond
position and orientation or specific backbone position.
A total of 247 exosome lipids were identified in all
samples (Supplementary Table 5A).

For the lipidomic comparative analysis, the lipid
intensities were total ion chromatogram (TIC)

normalized and log, transformed. To assess clustering,
PLS-DA was performed using the package ‘mixOmics’.
Significant lipids were identified in R using the package
‘limma’, which employs linear models to assess
differential expression in complex experiments. The
resulting p-values were adjusted using Benjamini-
Hochberg correction and fold changes were log
transformed. A heatmap of significant lipids was created
using the package ‘pheatmap’ and group clustering was
assessed using Euclidean distance and complete linkage.
Finally, violin plots were created using the package
‘ggplot2’. The exported statistical outputs, including log,
fold changes and p-values for the IR vs. LSM (Qui),
doxo vs. DMSO, and MiDAS vs. DMSO comparisons
are provided in Supplementary Table 5B, 5C.

Plasma exosome miRNA extraction, deep sequencing,
and analysis

The SEC/UF extracted plasma exosomes were
outsourced to LC Sciences, LLC (Houston, TX) for
miRNA deep sequencing and analysis. Briefly, a small
RNA (sRNA) library was generated for 10 plasma
exosome samples (n=5, young and old individuals each)
using a propriety Illumina Truseq™ Small RNA
Preparation kit (Illumina, # RS-930), according to the
manufacturers’ guide. The purified cDNA library was
used for cluster generation on Illumina’s Cluster Station
and then sequenced on Illumina GAIIx following the
vendor’s instruction for operating the instrument. Raw
sequencing reads (40 nts) were obtained using [llumina’s
Sequencing Control Studio software version 2.8 (SCS
v2.8), following real-time sequencing image analysis
and base-calling by Illumina’s Real-Time Analysis
version 1.8.70 (RTA v1.8.70). The extracted sequencing
reads were used in the standard data analysis. A
proprietary pipeline script, ACGT101-miR v4.2 (LC
Sciences), was used for sequencing data analysis [63].
For the miRNA differential analysis, a p-value < 0.05, an
absolute fold change > 1.5, and a read count > 0 in each
condition were required to identify statistically-
significant changes.

Data availability

a. Exosome protein cargo

All mass spectrometry raw files, spectral libraries,
Spectronaut files, descriptive methods, and other
Supplementary Tables and Data have been deposited
to MassIVE ftp://MSV000086782@massive.ucsd.edu
under MSV000086782 and ProteomeXchange under
PXDO023897 (http://proteomecentral.proteomexchange
.org). The Spectronaut projects that are uploaded
to the repositories can be viewed using the
free Spectronaut viewer (https://biognosys.com/our-
technology/spectronaut-viewer).
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b. Exosome lipid cargo

All mass spectrometry raw files and datasets have
been deposited to MassIVE https://massive.ucsd.edu/
ProteoSAFe/dataset.jsp?task=cde2046f0ebb458daf230ff
2334c¢423b under MSV000094326.

Statistical analysis

Five biological replicates were analyzed for exosome
plasma studies and four biological replicates for the
senescent fibroblasts IMR90 studies. We used the two-
tailed Student’s t-test or ANOVA (GraphPad Prism, La
Jolla, CA, USA) to determine differences between the
groups. Unless stated otherwise, the experimental data
are presented as the mean + standard deviation (SD)
from three independent experiments.

Pathway and network analysis

We conducted gene set over-representation analyses
using the ConsensusPathDB-human tool, release 34
(15.01.2019). Specifically, we analyzed a list of all
proteins that were significantly increased or decreased
(q-value < 0.05) in (a) Old vs. young plasma, (b) IR
vs. Qui, (c¢) doxo vs. Qui, and (d) MiDAS vs. Qui. We
referenced curated pathways for enrichment analysis
from the Gene Ontology (GO) Database, focusing on
“Biological Process” term categories. We considered
pathways with a minimum of three observed proteins,
g-value < 0.01, and GO terms restricted to levels 4-5
as significant. To provide background reference, we
used a list of all proteins present in the deep
fractionated DDA spectral library. The complete list of
differentially regulated pathways, corresponding
proteins, reference pathway annotations, statistics, and
source databases are available as a supplemental file
(Supplementary Table 4], 4K). To generate dot plot
representations of pathway analysis, we used the
“ggplot2” package in R.
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Supplementary Figure 1. (A) Workflow for the different plasma exosome enrichment methods were assessed for plasma exosome
extraction. SEC: size exclusion chromatography, UC: ultracentrifugation, UF: ultrafiltration. (B) Bar graph showing the distribution of plasma
exosome proteins identified using directDIA analysis in different exosome extraction methods UC and UF. UC: ultracentrifugation, UF:
ultrafiltration. (C) Western blot confirms the presence of CD9, CD63, and TSG101 proteins (EVs markers) in cell culture extracted exosome,
while the presence of Alpha-2-Macroglobulin (A2M) determined culture media protein contaminants.
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DDA library proteins Hybrid library proteins

directDIA library
proteins

Plasma ExoCarta Plasma ExoCarta Plasma ExoCarta

1492 611 543 831 1400 613
DDA Plasma Urine directDIA Plasma  Urine Hybrid Plasma Urine
exosomes exosomes exosomes exosomes exosomes exosomes

Supplementary Figure 2. (A-D) HPRP-fractionation and analysis of plasma exosomes for the generation of DDA, directDIA and hybrid-MS
deep spectral proteomics. (E) Assessment of the DDA library. (i) Distribution of precursor m/z value. (ii) Distribution of precursor charge. (iii)
Distribution of peptide length. (iv) Modifications of peptides. Carb (C), carbamidomethylation of cysteine residue; Oxi (M), oxidation of
methionine residue; Ac (Prot N-ter), acetylation of protein N-terminus. (v) Number of peptides per protein group. (vi) Number of fragments
per precursor. (vii) Fragment ion type. (viii) Fragment ion charge. (vi, vii, viii) Only fragments used in the assay were considered. (F)
Assessment of the directDIA library. (i) Distribution of precursor m/z value. (ii) Distribution of precursor charge. (iii) Distribution of peptide
length. (iv) Modifications of peptides. Carb (C), carbamidomethylation of cysteine residue; Oxi (M), oxidation of methionine residue; Ac (Prot
N-ter), acetylation of protein N-terminus. (v) Number of peptides per protein group. (vi) Number of fragments per precursor. (vii) Fragment
ion type. (viii) Fragment ion charge. (vi, vii, viii) Only fragments used in the assay were considered. (G) Assessment of the hybrid library. (i)
Distribution of precursor m/z value. (ii) Distribution of precursor charge. (iii) Distribution of peptide length. (iv) Modifications of peptides.
Carb (C), carbamidomethylation of cysteine residue; Oxi (M), oxidation of methionine residue; Ac (Prot N-ter), acetylation of protein N-
terminus. (v) Number of peptides per protein group. (vi) Number of fragments per precursor. (vii) Fragment ion type. (viii) Fragment ion
charge. (vi, vii, viii) Only fragments used in the assay were considered. (H) Venn diagrams showing the common and unique protein groups in
the plasma exosome libraries (DDA, directDIA and hybrid; > 2 unique peptides) and the human ExoCarta database. Gene names were used to
generate the Venn diagrams. (1) Venn diagrams showing the common and unique exosome protein groups in the plasma exosomes libraries
(DDA, directDIA and hybrid; > 2 unique peptides) and the urine exosome library. UniProt IDs were used to generate the Venn diagrams.

WWw.aging-us.com 1958 AGING



Qui MiDAS
=
q, &
= » i o S v
-t = » A9
£ : 4 Y A :
(2] p » e IRy P
= & = U T %
11} . y

47" N £

\ \ N SN z 2
3 I i , = = IR e Y

MiIDAS is mediated by Antimycin A
80-

Green field

B

AA= Antimycin A

AAPy= Antimycin A + Pyruvate
Py= Pyruvate

Cont= Control

Doxo= Doxorubicin

N
o
1

NAD+/NADH Ratio
IS
(=)

AA AAPy Py Cont Doxo

c IR vs Qui (control) Doxo vs Qui (control) MiIDAS vs Qui (control)
120 120 120 + ¥
e vl COLEA3 | |
100 e 100 i 100 TRl
LAMA2; IDYNC1H1 g ¥ o
i CAMAS i
o s —_ v —_ LAMA1 S LAMC1: +
g% 3% i GoL12a1 8| % LAMp1 1 ® Up-regulated
g bLES g e g couiat |} No change
Z 60 it Z 60 i < 60 . AHNAK D lated
E i 1 FNC £} AHNAR E COLIA2 g jA @ Down-regulate
2 CQUIAT e 2 LAMA:\-Z: : 2 AGRNS FNT' !
= G, = ioyNct =] N
A0 SOUTAT ¥ SCanaa N ID:WC o v 40 LAMAs'_’ S ANXAG
PCOLCE | céLiAi_'q,' LS ANXAG  MAMDC2 ot s " i
20 OCN go fhobed o 20 PCOLCE TFRG MYHZ/ECM1 2 LCE e
PDGFRA,Qch" . F/ERMYB POGFRA® V.. ¥ o2 JIFERMTJ .
ol Toa % VAG14 PLPP3 e B3, * NCAM i WK
PLPP3 .« *apve, CKM o e . VAC14 I . *SLC1A4
G . Vi UNNT o L
' R E’D'NR'EA T ) e -EONRD R A o D =5 othiiloega.c oo
12 9 6 -3 0 3 6 9 12 12 9 6 -3 0 3 6 9 12 12 9 6 -3 0 3 6 9 12
Logs(fold change) Log,(fold change) Log,(fold change)

Supplementary Figure 3. (A) Estimation of cell death using SYTOX Green Cytotoxicity Assay. (B) NAD+/NADH ratio calculations for IMR90
cells. (€C) Volcano plots showing the significantly altered protein groups in senescence (IR, Doxo, MiDAS) vs Quiescent (control) out of the
1,426 quantifiable protein groups (g-value <0.05, |log2fold change| > 0.58).
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Supplementary Figure 4. (A-C) Bar diagrams showing the total number of identified and quantified protein groups in the human plasma
exosome study with the three different libraries (hybrid, DDA, and directDIA). (D) Venn diagram showing the common and unique
significantly altered human plasma exosome protein groups obtained with the three different libraries. (E) Boxplot showing the ratio of the
‘Old vs Young’ fold-change for the shared significantly altered protein groups obtained with directDIA or hybrid library vs DDA library.
(F) Summary of all quantifiable (with > 2 unique peptides) and significantly altered age-specific plasma exosome protein groups (g-value <
0.05, |log2 fold change| > 0.58). We used DIA-MS protein identification and quantification to analyze plasma exosomes from young and
elderly individuals and processed the data using three different spectral libraries: hybrid DDA-DIA library, DDA library, or directDIA library.
Overall, we reproducibly identified and quantified a total of 1,356 protein groups using the hybrid spectral library (Supplementary Figure 4A
and Supplementary Table 4B), 1,349 protein groups using the spectral library generated from DDA searches (Supplementary Figure 4B and
Supplementary Table 4E), and 760 protein groups when applying directDIA searches (Supplementary Figure 4C and Supplementary Table 4H).
For all, we reported protein groups numbers obtained with a 1% false discovery rate (FDR) and > 2 unique peptides. We investigated the
significantly changing protein groups in plasma exosomes from ‘old vs young’ individuals that resulted from all spectral library-based
approaches, and interestingly 109 significantly altered proteins were commonly shared between all libraries (g-value < 0.05 and |log2 old vs
young| > 0.58; Supplementary Figure 4D). The highly consistent fold-changes of the shared protein groups with the hybrid and directDIA
library compared to the DDA spectral library demonstrate that all spectral library workflows are robust and can be used for protein
quantification (Supplementary Figure 4E). However, the maximum depth of coverage was obtained with the hybrid spectral library with 1,356
identified and quantified protein groups (> 2 unique peptides), so we focused on the 171 protein groups that significantly changed within
plasma exosomes between the ‘old vs young’ cohorts, when using the DIA-MS hybrid library approach (Supplementary Figure 4F), in this
study.
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Supplementary Figure 5. Age-specific plasma exosome miRNA signatures in old and young cohorts. (A) miRNA nucleotide size
distribution. (B) Overlapping and unique exosome miRNAs in plasma from older and young individuals. (C) Volcano plot showing significantly
altered age-specific plasma exosome miRNAs (P-value < 0.05 and > 1.5-fold). Red, upregulated; Green, down-regulated; and Gray, not
significantly changed. A few differentially abundant miRNAs are labeled. (D) Age-related exosome miRNA pathways.
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Supplementary Figure 6. Venn diagram showing the common and unique significantly altered protein groups in human
plasma exosomes from this study (old vs young comparison, “Plasma exosome proteins”), in senescence-induced IMR90
exosomes (merged from the three inducers) from this study (“Exosome SASP proteins”), and human age-associated soluble
plasma proteins from Johnson, Wyss-Coray et al., 2020 (“Soluble plasma proteins”) [32].
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Supplementary Tables
Please browse Full Text version to see the data of Supplementary Tables 2—8.

Supplementary Table 1. Plasma sample details.

Sample Sample ID Age (yrs)
Young 1 Y1 24
Young 2 Y2 26
Young 3 Y3 26
Young 4 Y4 20
Young 5 Y5 22
Old 1 01 74
Old 2 02 67
Old 3 03 70
Old 4 04 65
Old 5 05 65

Supplementary Table 2A. Protein content of the DDA spectral library.

Supplementary Table 2B. Protein content of the DDA spectral library.

Supplementary Table 2C. Protein content of the directDIA spectral library.

Supplementary Table 2D. Protein content of the directDIA spectral library.

Supplementary Table 2E. Protein content of the hybrid spectral library.

Supplementary Table 2F. Protein content of the hybrid spectral library.

Supplementary Table 2G. Assessment of the quality of the spectral libraries using DIALib-QC.

Supplementary Table 2H. List of common exosome proteins in plasma Hybrid, DDA and directDIA spectral
library and urine data.

Supplementary Table 3A. List of all proteins ( 2 2 unique peptides) identified in IR induced senescent IMR90
cells (IR / Quiescent).

Supplementary Table 3B. List of significantly altered proteins identified in IR induced senescent IMR90 cells (IR /
Quiescent).

Supplementary Table 3C. List of all proteins ( 2 2 unique peptides) identified in Doxo induced senescent IMR90
cells (Doxo / Quiescent).

Supplementary Table 3D. List of significantly altered proteins identified in Doxo induced senescent IMR90 cells
(Doxo / Quiescent).

Supplementary Table 3E. List of all proteins ( 2 2 unique peptides) identified in MiDAS induced senescent IMR90
cells (MiDAS / Quiescent).

Supplementary Table 3F. List of significantly altered proteins in MiDAS induced IMR90 cells (MiDAS /
Quiescent).

Supplementary Table 3G. List of common up-regulated exosome proteins in IR,Doxo and MiDAS induced IMR90
senescent cells.
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Supplementary Table 3H. List of common down-regulated exosome proteins in IR,Doxo and MiDAS induced
IMR90 senescent cells.

Supplementary Table 3I. List of common and unique proteins in IR exosome and soluble SASP.

Supplementary Table 3J. List of common and unique significantly altered exosome surface proteins in IR, Doxo
and MiDAS in fibroblasts cells.

Supplementary Table 4A. List of all proteins identified in pilot experiment (Old/ young) analysed with the
Hybrid spectral library.

Supplementary Table 4B. List of all proteins ( 2 2 unique peptides) identified in pilot experiment (Old/ Young)
analysed with the Hybrid spectral library.

Supplementary Table 4C. List of significantly altered proteins in pilot experiment (Old/Young) analysed with the
Hybrid spectral library.

Supplementary Table 4D. List of all proteins identified in pilot experiment (Old/ Young) analysed with the deep
fractionation DDA spectral library.

Supplementary Table 4E. List of all proteins ( 2 2 unique peptides) identified in pilot experiment (Old/Young)
analysed with the deep fractionation DDA spectral library.

Supplementary Table 4F. List of significantly altered proteins in pilot experiment (Old/Young) analysed with the
deep fractionation DDA spectral library.

Supplementary Table 4G. List of all proteins identified in pilot experiment (Old/Young) analysed with the
directDIA spectral library.

Supplementary Table 4H. List of all proteins ( 2 2 unique peptides) identified in pilot experiment (Old/Young)
analysed with the directDIA spectral library.

Supplementary Table 4. List of significantly altered proteins in pilot experiment (Old /Young) analysed with the
directDIA spectral library.

Supplementary Table 4J. List of up-regulated pathways obtained using the significantly altered proteins (Hybrid
spectral library).

Supplementary Table 4K. List of down-regulated pathways obtained using the significantly altered proteins
(Hybrid spectral library).

Supplementary Table 5A. List of total lipids identified in a cell culture.
Supplementary Table 5B. List of total lipids significantly altered in all senescent conditions.

Supplementary Table 5C. List of common lipids among all senescence conditions.

Supplementary Table 6A. List of all miRNA identified in the plasma exosome from old and young individuals
(Old/Young).

Supplementary Table 6B. List of common and unique plasma exosome miRNA in old and young individuals.

Supplementary Table 6C. List of significantly altered miRNA in the plasma exosome from old and young
individuals (Old/Young).

Supplementary Table 6D. List of common and unique miRNA in exosome from plasma of old individuals and
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senescent IMR90 cells (all three conditions).

Supplementary Table 6E. List of common and unique miRNA in plasma and plasma exosome from old
individuals.

Supplementary Table 7. Lists of common and unique significantly altered proteins identified in our study, the
human plasma exosome proteins (old vs young individuals) and the senescence-induced IMR90 exosome
proteins (combined across the three inducers) as well as in human age-associated soluble plasma proteins
(Johnson, Wyss-Coray et al., 2020).

Supplementary Table 8A. DIA Isolation Window (m/z) details for plasma.
Supplementary Table 8B. DIA Isolation Window (m/z) details for cell culture.
Supplementary Table 8C. UHPLC gradient and column wash profiles used for the lipidomic LC analyses.

Supplementary Table 8D. CID collision energy ramp method.
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